180 research outputs found

    Testing the Color Charge and Mass Dependence of Parton Energy Loss with Heavy-to-light Ratios at RHIC and LHC

    Full text link
    The ratio of nuclear modification factors of high-pT heavy-flavored mesons to light-flavored hadrons (``heavy-to-light ratio'') in nucleus-nucleus collisions tests the partonic mechanism expected to underlie jet quenching. Heavy-to-light ratios are mainly sensitive to the mass and color-charge dependences of medium-induced parton energy loss. Here, we assess the potential for identifying these two effects in D and B meson production at RHIC and at the LHC. To this end, we supplement the perturbative QCD factorized formalism for leading hadron production with radiative parton energy loss. For D meson spectra at high but experimentally accessible transverse momentum (10 < pT < 20 GeV) in Pb-Pb collisions at the LHC, we find that charm quarks behave essentially like light quarks. However, since light-flavored hadron yields are dominated by gluon parents, the heavy-to-light ratio of D mesons is a sensitive probe of the color charge dependence of parton energy loss. In contrast, due to the larger b quark mass, the medium modification of B mesons in the same kinematical regime provides a sensitive test of the mass dependence of parton energy loss. At RHIC energies, the strategies for identifying and disentangling the color charge and mass dependence of parton energy loss are more involved because of the smaller kinematical range accessible. We argue that at RHIC, the kinematical regime best suited for such an analysis of D mesons is 7 < pT < 12 GeV, whereas the study of lower transverse momenta is further complicated due to the known dominant contribution of additional, particle species dependent, non-perturbative effects.Comment: 21 pages RevTex, 9 Figure

    PyPWA: A Software Toolkit for Parameter Optimization and Amplitude Analysis

    Full text link
    PyPWA is a toolkit designed to optimize parametric models describing data and generate simulated distributions according to a model. Its software has been written within the python ecosystem with the goal of performing Amplitude or Partial Wave Analysis (PWA) in nuclear and particle physics experiments. We briefly describe the general features of amplitude analysis and the PyPWA software design and usage. We provide benchmarks of the scaling and an example of its application

    Induced scalarization in boson stars and scalar gravitational radiation

    Get PDF
    The dynamical evolution of boson stars in scalar-tensor theories of gravity is considered in the physical (Jordan) frame. We focus on the study of spontaneous and induced scalarization, for which we take as initial data configurations on the well-known S-branch of a single boson star in general relativity. We show that during the scalarization process a strong emission of scalar radiation occurs. The new stable configurations (S-branch) of a single boson star within a particular scalar-tensor theory are also presented.Comment: 18 pages, 11 figures. Minor changes to match the published versio

    Medium-evolved fragmentation functions

    Full text link
    Medium-induced gluon radiation is usually identified as the dominant dynamical mechanism underling the {\it jet quenching} phenomenon observed in heavy-ion collisions. In its actual implementation, multiple medium-induced gluon emissions are assumed to be independent, leading, in the eikonal approximation, to a Poisson distribution. Here, we introduce a medium term in the splitting probabilities so that both medium and vacuum contributions are included on the same footing in a DGLAP approach. The improvements include energy-momentum conservation at each individual splitting, medium-modified virtuality evolution and a coherent implementation of vacuum and medium splitting probabilities. Noticeably, the usual formalism is recovered when the virtuality and the energy of the parton are very large. This leads to a similar description of the suppression observed in heavy-ion collisions with values of the transport coefficient of the same order as those obtained using the {\it quenching weights}.Comment: LaTeX, 18 pages, 13 figures included using epsfig, uses JHEP3; v2: enlarged discussions, one figure replaced, some references added, final versio

    The Carnegie Supernova Project: Analysis of the First Sample of Low-Redshift Type-Ia Supernovae

    Get PDF
    We present the analysis of the first set of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project. Well-sampled, high-precision optical (ugriBV) and near-infrared (NIR; YJHKs) light curves obtained in a well-understood photometric system are used to provide light-curve parameters, and ugriBVYJH template light curves. The intrinsic colors at maximum light are calibrated to compute optical--NIR color excesses for the full sample, thus allowing the properties of the reddening law in the host galaxies to be studied. A low value of Rv~1.7, is derived when using the entire sample of SNe. However, when the two highly reddened SNe in the sample are excluded, a value Galactic standard of Rv~3.2 is obtained. The colors of these two events are well matched by a reddening model due to circumstellar dust. The peak luminosities are calibrated using a two-parameter linear fit to the decline rates and the colors, or alternatively, the color excesses. In both cases, dispersions in absolute magnitude of 0.12--0.16 mag are obtained, depending on the filter-color combination. In contrast to the results obtained from color excesses, these fits give Rv~1--2, even when the two highly reddened SNe are excluded. This discrepancy suggests that, beyond the "normal" interstellar reddening produced in the host galaxies, there is an intrinsic dispersion in the colors of SNe Ia which is correlated with luminosity but independent of the decline rate. Finally, a Hubble diagram is produced by combining the results of the fits for each filter. The resulting scatter of 0.12 mag appears to be limited by peculiar velocities as evidenced by the strong correlation between the distance-modulus residuals among the different filters. The implication is that the actual precision of SN Ia distances is 3--4%.Comment: 76 pages, 20 figures, accepted for publication in A

    Whisker spot patterns: a noninvasive method of individual identification of Australian sea lions (Neophoca cinerea)

    Get PDF
    Reliable methods for identification of individual animals are advantageous for ecological studies of population demographics and movement patterns. Photographic identification, based on distinguishable patterns, unique shapes, or scars, is an effective technique already used for many species. We tested whether photographs of whisker spot patterns could be used to discriminate among individual Australian sea lion (Neophoca cinerea). Based on images of 53 sea lions, we simulated 5,000 patterns before calculating the probability of duplication in a study population. A total of 99% (± 1.5 SD) of patterns were considered reliable for a population of 50, 98% (± 1.7 SD) for 100, 92% (± 4.7 SD) for 500, and 88% (± 5.7 SD) for 1,000. We tested a semiautomatic approach by matching 16 known individuals at 3 different angles (70°, 90°, and 110°), 2 distances (1 and 2 m), and 6 separate times over a 1-year period. A point-pattern matching algorithm for pairwise comparisons produced 90% correct matches of photographs taken on the same day at 90°. Images of individuals at 1 and 2 m resulted in 89% correct matches, those photographed at different angles and different times (at 90°) resulted in 48% and 73% correct matches, respectively. Our results show that the Chamfer distance transform can effectively be used for individual identification, but only if there is very little variation in photograph angle. This point-pattern recognition application may also work for other otariid species

    The Carnegie Supernova Project: First Photometry Data Release of Low-Redshift Type Ia Supernovae

    Get PDF
    The Carnegie Supernova Project (CSP) is a five-year survey being carried out at the Las Campanas Observatory to obtain high-quality light curves of ~100 low-redshift Type Ia supernovae in a well-defined photometric system. Here we present the first release of photometric data that contains the optical light curves of 35 Type Ia supernovae, and near-infrared light curves for a subset of 25 events. The data comprise 5559 optical (ugriBV) and 1043 near-infrared (YJHKs) data points in the natural system of the Swope telescope. Twenty-eight supernovae have pre-maximum data, and for 15 of these, the observations begin at least 5 days before B maximum. This is one of the most accurate datasets of low-redshift Type Ia supernovae published to date. When completed, the CSP dataset will constitute a fundamental reference for precise determinations of cosmological parameters, and serve as a rich resource for comparison with models of Type Ia supernovae.Comment: 93 pages, 8 figures, accepted for publication in A

    Nuclear shadowing in Glauber-Gribov theory with Q2-evolution

    Full text link
    We consider deep inelastic scattering off nuclei in the Regge limit within the Glauber-Gribov model. Using unitarized parton distribution functions for the proton, we find sizeable shadowing effects on the nuclear total and longitudinal structure functions, F2AF_2^A and FLAF_L^A, in the low-x limit. Extending a fan-diagram analysis for the large-mass region of coherent diffraction off nuclei to high Q2, we also find significant shadowing effects in this kinematical regime. Finally, we discuss shortcomings of our approach and possible extensions of the model to other kinematical regimes.Comment: 16 pages, 9 figure
    • …
    corecore